DISCRETE MATHEMATICS Section-A

1.Find out which of the following sentences are statements?

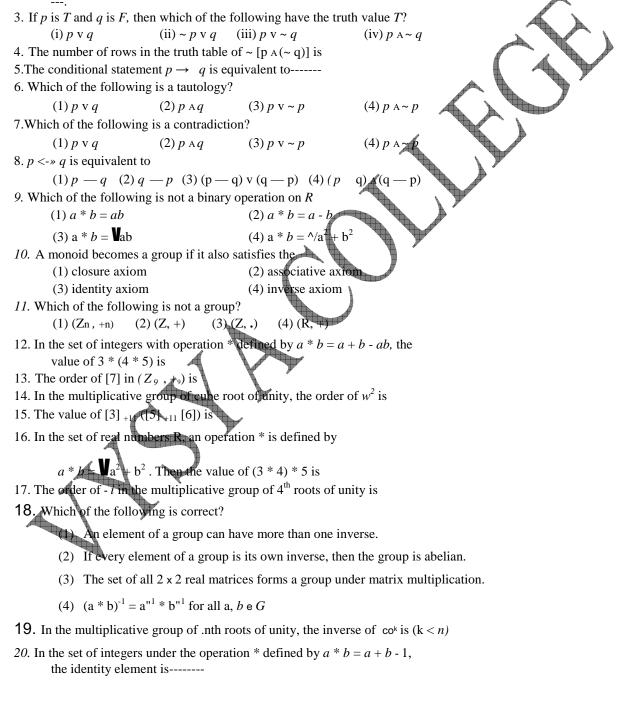
(i) May God bless you with success

(ii) Rose is flower

(iii) The colour of the milk is white

(iv) 1 is a prime number.

2. If a compound statement is made up of three simple statements, then the number of rows in the truth table is------



SECTION- B

- 1. State and Prove the Cancellation laws .
- 2. State and Prove the Reversal law.
- 3. Find the order of each element of the group $(Z_6, +_6)$
- 4. Construct the truth tables for the following statement (~ p) ${\mbox{\tiny A}}$ (~ q)
- 5. Construct the truth tables for the following statement $\sim (p \vee (\sim q))$
- 6. Construct the truth tables for the following statement $(p \lor q) \land (\sim q)$
- 7. Construct the truth tables for the following statement $\sim [(\sim p) \land (\sim q)]$
- 8. Construct the truth tables for the following statement $(p \lor q) \land r$
- 9. Construct the truth tables for the following statement $(p \land q) \lor \neg r$
- 10. Construct the truth tables for the following statement $(p \lor q) \lor r$
- 11. Construct the truth tables for the following statement (p ${}_{A}$ q) v ${}_{r}$
- 12. Construct the truth tables for the following statement $p \vee \neg q$
- 13. Construct the truth tables for the following statement($\sim p$) v($\sim q$)
- 14. Construct the truth tables for the following statement $\sim (p \lor q)$
- 15. Construct the truth tables for the following statement $(p \lor q) \lor (\neg p)$
- 16. Construct the truth tables for the following statement $(p \land q) \land (p \land q)$
- 17. Construct the truth tables for the following statement ($\sim (p \vee (\sim q))$)
- 18. Construct the truth tables for the following statement $(p \land q) \lor [\land (p \land q) \lor [\land (p \land q) \lor (p \land q)$
- 19. Construct the truth tables for the following statement $(p \land q) \lor (\sim q)$
- 20. Show that \sim (p v q) = ((\sim p) \land (\sim q))
- 21. Show that $p \land p$ is a contradiction.
- 22. Show that $p v \sim p$ is a tautology.
- 23. Show that $((\sim p) \lor (\sim q)) \lor p$ is a tautology
- 24. Show that $((\sim q) \land p) \land q$ is a contradiction.
- 25. Use the truth table to determine whether the statement $((\sim p) \lor q) \lor (p \land (\sim q))$ is a tautology
- 26. Use the truth table to determine whether the statement $((\sim p) \land q)) \land p$ is a tautology
- 27.Use the truth table to determine whether the statement($p \lor q$) \lor (~ ($p \lor q$)) is a tautology
- 28. Use the truth table to determine whether the statement($p \land (\sim q)) \lor ((-p) \lor q)$) is a tautology
- 29. Use the truth table to determine whether the statement $q \vee (p \vee (\sim q))$ is a tautology
- 30. Use the truth table to determine whether the statement $(p \land (\sim p)) \land ((-q) \land p)$

is a tautology.

- 31. Show that $p \rightarrow q = (\sim p) \vee q$
- 32. Show that $p \leftrightarrow q = (p + q) \land (q p)$
- 33. Show that $p \leftrightarrow q = ((-p) \vee q) \land ((-q) \vee p)$
- 34. Show that $\sim (p \land q) = ((\sim p) \lor (\sim q))$

35. Show that $p \rightarrow q$ and $q \rightarrow p$ are not equivalent

36. Show that $(p \land q) - (p \lor q)$ is a tautology.

- 37. Show that the cube roots of unity forms a finite abelian group under multiplication.
- 38. Prove that the set of all 4th roots of unity forms an abelian group under multiplication
- 39.(10), (-1 0), (10), (-1 0) form an abelian group, under multiplication of matrices.
 - 01 0 1 0 -1 0 -1

SECTION- C

- 1. Show that the set G of all positive rationals forms a group under the composition *defined by a*b = ab/3 for all $a,b \in G$.
- 2. Show that the set *G* of all rational numbers except 1 forms an abelian group with respect to the operation * given by a * b = a + b + ab for all a, $b \in G$.
- , wher $e R \{0\}$, is a group under matrix multiplication. Show that the set G of all matrices of the form 3. 4. Show that the G= {2" / n е Z}isan abelian group set under multiplication

5. Find the order of each element in the group $(Z7 - \{[0]\}, .7)$

6. Show that the set {[1], [3], [4], [5], [9]} forms an abelian group under multiplication modulo 1.

7 Prove that the set of four functions /1, /2, /3, /4 on the set of nonzero complex numbers C_{-} [0] defined by $f_1(z) = z$, $f_2(z) = -z$, $f_3(z) = z$ and $f_4(z) = -z \forall z \in C - \{0\}$ forms an abelian group with respect to the composition of functions.

8. Show that { (1 0), (ω 0), (ω^2 0), (0 1), (0 ω^2), (0 ω) } 0 1 0 ω^2 0 ω 1 0 ω 0 ω^2 0

Where w3 = 1, w = 1 form a group with respect to the matrix multiplication

9. Show that $(Z_n, +_n)$ forms group.

10. Show that the nth roots of unity form an abelian group of finite order with usual multiplication.